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Abstract. In this paper, we investigate linear relations among the Eu-
ler function of nearby integers. In particular, we study those positive
integers n such that φ(n) = φ(n − 1) + φ(n − 2), where φ is the Euler
function. We prove that they form a set of asymptotic density zero. We
also show that the sum of the reciprocals of the prime values of n with
the above property is a convergent series.
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1. Introduction

In [1], Bager called an integer n ≥ 3 a Phibonacci number if φ(n) =

φ(n − 1) + φ(n − 2), where φ is the Euler function. He asked if there are

any composite Phibonacci numbers. A quick computer search reveals that

n = 1037 = 17 · 61 is a composite Phibonacci number. It is still open

whether there are any even Phibonacci numbers: if they exist, they should

be greater than 101600 (see [1]).

In this paper, we prove a general result concerning linear relations among

the values of the Euler function of nearby integers. As a byproduct of

this result, it will follow that for most positive integers n the sums of the

Euler functions at integers close to n are distinct. In particular, the set

of Phibonacci numbers is of asymptotic density zero. We also look at the

subset of Phibonacci numbers which are primes, and we show that the sum

of the reciprocals of the members of this set is finite. Hence, either this set

is finite, or infinite but the series of reciprocals of its members is convergent.

Similar results hold with the Euler function φ replaced by the sum of divisors

function σ.
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Problems of a similar nature were considered previously, most notably in

the series of papers [4], [5], [6] and [7], where the sets of positive integers

n such that φ(n) = φ(n + 1), or σ(n) = σ(n + 1), or ω(n) = ω(n + 1), or

Ω(n) = Ω(n + 1) or τ(n) = τ(n + 1), where σ, ω, Ω and τ are the sum of

divisors, the number of prime divisors, the number of prime power (> 1)

divisors and the total number of divisors functions of n, respectively. All

such sets of positive integers were shown to have asymptotic density zero.

Our paper is inspired by the papers in the above series.

Throughout this paper, we use the Vinogradov symbols� and� and the

Landau symbols O and o with their usual meanings. The constants implied

by such symbols are absolute. We write x for a large positive real number,

and p and q for prime numbers. If A is a set of positive integers, we write

A(x) = A ∩ [1, x]. We write log x for the maximum between the natural

logarithm of x and 1. Thus, all logarithms which will appear are ≥ 1. We

use c1, c2, . . . for positive computable constants which are absolute.

Acknowledgements. We thank the anonymous referee for a careful

reading of the manuscript and for suggestions which improved the presen-

tation of this paper. During the preparation of this paper, F. L. was sup-

ported in part by grants SEP-CONACyT 46755, PAPIIT IN104505 and a

Guggenheim Fellowship, and P. S. was supported by a Research Initiation

Program grant from Naval Postgraduate School.

2. The Results

Let t ≥ 1 be a positive integer. Let a = (a0, . . . , at) be a vector with

integer components, not all zero. Put Aa for the set of all positive integers

n, such that

(1)
t∑

i=0

aiφ(n + i) = 0.

Here and in what follows, if A is a subset of the positive integers and b is a

positive integer, then A + b = {a + b : a ∈ A}. Put H(a) = max{|ai| : i =

0, . . . , t}. Given a positive real number x we put y = exp(log x/ log log x).

Note that A(1,−1) coincides with the set of positive integers n such that

φ(n) = φ(n + 1), and that the set of Phibonacci numbers is A(1,1,−1) + 2.

Theorem 2.1. Let C(t, a) = t3 log H(a). Then the estimate

#Aa(x) � C(t, a)
x log log log x√

log log x
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holds uniformly in a and 1 ≤ t < y.

Note that the above estimate is non-trivial only when

t < c0(a)
(log log x)1/6

(log log log x)1/3
,

where c0(a) is some constant depending on a.

Corollary 2.2. Let ε > 0 be fixed. Then, for a set of positive integers n of

asymptotic density one, the numbers∑
i∈I

φ(n + i) for I ⊂ {0, 1, . . . , t(n)},

where t(n) = b(1/(4 log 2)− ε) log log log nc, are all distinct.

Now let

Pa = {n ∈ Aa : n + i is prime for some i = 0, . . . , t, with ai 6= 0}.

We have the following result.

Theorem 2.3. Let D(t, b, a) = tH(a) + t2 log log |t|. Then the estimate

Pa(x) � D(t, b, a)
x

(log x)5/4

holds uniformly in b, a with H(a) ≤ y, and 1 ≤ t < y.

Let P be the set of prime Phibonacci numbers. Note that P is contained

in P(1,1,−1) + 2. By partial summation, Theorem 2.3 implies that∑
p∈P

1

p
< ∞.

Also, while Theorem 2.1 shows that the set of Phibonacci numbers is of

asymptotic density zero, the upper bound on the counting function of this

set is not strong enough to allow us to deduce whether the sum of the

reciprocals of all the Phibonacci numbers is convergent. We would like to

propose this as a conjecture.

Conjecture 2.4. Show that
∑

n Phibonacci

1

n
< ∞.
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3. The Proofs

For a positive integer n we write P (n) and p(n) for the largest and smallest

prime factor of n, respectively. Recall that a positive integer m is called

powerful if p2|m whenever p|m.

For the proof of Theorem 2.1, we need the following lemma.

Lemma 3.1. Assume that x is a positive real number. We put z = log log x

and w = bc1 log log log xc, where c1 = 3/(2 log 2). Let A(x) be the set of

positive integers n ≤ x satisfying the following properties:

(i) If d|n is powerful, then d < z.

(ii) If d|n, d > x1/3, then P (d) > y.

(iii) If p|n is a prime, then p− 1 is not divisible by 2w.

Then A(x) contains all positive integers n ≤ x with O(x/
√

log log x) excep-

tions.

Proof. We start with an upper bound on the set

A1(x) = {n ≤ x : n fails condition (i)}.

For each n ∈ A1(x), there exists a powerful d > z dividing n. For a fixed

value of d, the number of such n ≤ x is ≤ x/d. Summing up over all d, we

get

(2) #A1(x) ≤ x
∑
d>z

d powerfull

1

d
� x√

z
=

x√
log log x

,

where the last estimate follows by partial summation from the well-known

estimate

{m ≤ s : m powerfull} � s1/2

(see, for example, Theorem 14.4 in [9]). Now let

A2(x) = {n ≤ x : n fails condition (ii)}.

Put

B(s) = {n ≤ s : P (n) ≤ y}.

It is well-known (see, for example, Section III.5.4 in Tenenbaum’s book

[11]), that

(3) #B(s) = Ψ(s, y) = x exp(−(1 + o(1))u log u),

where u = log s/ log y uniformly when s ∈ [x1/3, x].
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To estimate A2(x), let d > x1/3 be such that P (d) < y. The number of

n ≤ x which are multiples of d is ≤ x/d. Thus,

#A2(x) ≤ x
∑

x1/3<d≤x
P (d)<y

1

d
= x

∫ x

x1/3

d(Ψ(s, y))

s
.

By partial integration and using estimate (3), we get that with

v = log(x1/3)/ log y = (1/3) log log x,

the estimate

(4) #A2(x) ≤ x log x exp(−(1 + o(1))v log v) = o

(
x√

log log x

)
holds. Finally, let

A3(x) = {n ≤ x : p|n for some p with 2w|p− 1}.

Fixing such a prime p, the number of n ≤ x which are multiples of p is

≤ x/p. Thus,

(5) #A3(x) ≤ x
∑
p≤x

p≡1 (mod 2w)

1

p
� x log log x

2w
� x√

log log x
,

where we used the known fact that the estimate

(6)
∑
p≤s

p≡1 (mod d)

1

p
� log log s

φ(d)

holds uniformly for 1 ≤ d ≤ s (see the bound (3.1) in [10] or Lemma 1

in [2]). The conclusion of the lemma follows from estimates (2), (4) and

(5). �

Proof of Theorem 2.1. We assume that 1 ≤ t ≤ n− t. For a nonzero integer

n we write ν(n) for the order at which 2 divides n.

If n =
∏

pα||n pα, we also put

ν ′(n) = ν(n) +
∑
pα||n

αν(p− 1).

It is clear that ν ′(n) is strongly additive.

We look only at those positive integers n such that

n ∈ A0(x) :=
t⋂

i=0

(A(x)− i) ,
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where A(x) is the set appearing in Lemma 3.1. In particular, n + i ∈ A(x)

for all i = 0, 1, . . . , t. By Lemma 3.1, the number of excluded integers up to

x does not exceed

O

(
tx√

log log x

)
.

uniformly for 1 ≤ t ≤ x. Hence, it suffices to prove the estimate stated by

the theorem only for those positive integers n in A0(x).

For a positive integer n we write m(n) for the largest powerful divisor of

n. Then,

ν ′(n + i) = ν(φ(n + i)) + 1 +
∑

pα||n+i
α>1, p>2

(α− 1)ν(p− 1)

= ν(φ(n + i))) + O(log(m(n + i)))

= ν(φ(n + i)) + O(log z)

= ν(φ(n + i)) + O(log log log x).(7)

We recall the following obvious fact.

Lemma 3.2. Let (bi)
t
i=0 be a finite sequence of nonzero integers. If

t∑
i=0

bi = 0,

then there exists i < j such that ν(bi) = ν(bj).

Assume now that n ∈ Aa(x) ∩ A0(x). By Lemma 3.2, there exist i < j

such that aiaj 6= 0 and ν(aiφ(n + i)) = ν(ajφ(n + j)). We fix i and j. We

then get that

|ν(φ(n + i))− ν(φ(n + j))| = |ν(ai)− ν(aj)| ≤ A,

where we write A = blog H(a)/ log 2c. Together with estimate (7), we arrive

at the conclusion that

(8) |ν ′(n + i)− ν ′(n + j)| = O(A + log log log x) � A log log log x.

We now fix j ∈ {1, . . . , t} and put

A0,j(x) = {n ∈ A0(x) : |ν ′(n)− ν ′(n + j)| ≤ c2A log log log x},

where c2 is the constant implied by inequality (8). Note that if n satisfies

inequality (8), then n+ i ∈ A0,j−i(x). Thus, it follows that in order to prove

the estimate claimed by Theorem 2.1, it suffices to show that the estimate

(9) #A0,j(x) � At
log log log x√

log log x
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holds uniformly in 1 ≤ t ≤ x. There are two possible ways to proceed in

order to prove estimate (9). One possibility is to use the Barban-Vinogradov

Theorem on the joint distribution of the strongly additive functions ν ′(n)

and ν ′(n + j) [3, Theorem 20.1, p. 262]. In fact, if t is fixed, then estimate

(9) is implied even with an extra saving of 1/ log log log log x directly from

the statement of the above theorem in [3] and Lemma 3.1. Unfortunately,

for the purpose of that theorem the shift j must be fixed, whereas we want

our result to be uniform in it as well. A second method, which is the one

we choose to follow, it is the method used in [6] to deal with the set of n

such that ω(n) = ω(n + 1).

Given n ∈ A0,j(x), let us define the integers a, b, κ, ` by

n + j = aκ, P (a) ≤ p(κ), a ≤ x1/3, ap(κ) > x1/3;
n = b`, P (b) ≤ p(`), b ≤ x1/3, bp(`) > x1/3.

We shall assume that p(κ) ≤ p(`), the case p(κ) > p(`) being similar. For

1 ≤ s ≤ x1/3, let N (s) be the number of n ∈ A0,j(x) with s ≤ p(κ) < s3.

Note that if we set su = x3−u
, we have

(10) #A0,j(x) ≤
∞∑

u=1

N (su).

Note also that since n+j ∈ A0(x), it follows that ap(κ) > x1/3 is a divisor of

n+j, and by property (i) of the set A(x), it follows that p(κ) = P (ap(κ)) >

y. Thus, if n is counted by N (su), then s3
u > y. Hence, x3−u+1

> y, which

leads to 3u−1 < log log x, therefore u < 1+ log log log x/ log 3. In particular,

the sum appearing in the right hand side of estimate (10) is finite.

We now turn our attention to estimating N (s). If n is counted by N (s),

then the numbers a, b, κ and ` defined above satisfy

(11)
aκ− b` = j, aκ < x, |ν ′(aκ)− ν ′(b`)| � A log log log x,

s ≤ p(κ) < p(`), a ≤ x1/3, b ≤ x1/3,
P (a) ≤ p(κ) ≤ s3, a > x1/3/p(κ) > x1/3/s3.

Since all of the primes in κ or ` are at least s, we have that

ω(κ) ≤ log x

log s
and ω(`) ≤ log x

log s
.

Since both n and n + j satisfy property (ii) of Lemma 3.1, it follows that

ν ′(κ) ≤ wω(κ) � log x log log log x

log s
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and a similar upper bound holds for ν ′(`). Thus,

|ν ′(a)− ν ′(b)| ≤ |ν ′(aκ)− ν ′(b`)|+ |ν ′(κ)− ν ′(`)| ≤ c3A
log x log log log x

log s
,

where c3 > 0 is an absolute constant. We now fix the integers a, b appearing

in (11) and count the number of pairs κ, ` there can be. Let d = gcd(a, j).

Since j ≤ t, min{p(κ), p(`)} ≥ y > t, it follows that ` is coprime to d,

therefore d = gcd(b, j). Let a = da0, b = db0, j = dj0, and κ0, `0 denote

the unique integers which satisfy

a0κ0 − b0`0 = j0, 0 ≤ κ0 < b0, 0 ≤ `0 ≤ a0.

Hence, if κ, ` satisfy (11), we have some integer m with

(12)
κ = b0m + κ0, ` = am + `0,

0 ≤ m ≤ x

ab0

=
xd

ab
, p ((b0m + κ0)(a0m + `0))) ≥ s.

Thus, it suffices to count the number of m satisfying (12). This is easily done

as on page 3 in [6], by using either Brun’s method or Selberg’s sieve (see,

e.g. [8], Theorem 3.1 on page 101). Noting that a ≤ x1/3, b0 ≤ b ≤ x1/3, we

get that the number of such m is

≤ c4x

φ(a)φ(b0)(log s)2
≤ c4xφ(d)

φ(a)φ(b)(log s)2
,

where c4 > 0 is an absolute constant. Summing up over all possible values

of d|j and using the fact that ∑
d|j

φ(d) = j,

we get that the number of such integers m when a and b are fixed is

≤ c4xj

φ(a)φ(b)(log s)2
≤ c4xt

φ(a)φ(b)(log s)2
.

Thus, from (11) and (12), we have

N (s) ≤
∑

a>x1/3/s3

P (a)<s3

∑
b≤x1/3

|ν′(a)−ν′(b)|≤Ac3 log x log log log x

(log s)2

c4xt

φ(a)φ(b)(log s)2

=
c4xt

(log s)2

∑
a>x1/3/s3

P (a)<s3

1

φ(a)

∑
|t−ν′(a)|≤Ac3 log x log log log x

(log s)2

∑
b≤x1/3

ν′(b)=t

1

φ(b)
.(13)

We will need the following lemma.
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Lemma 3.3. Let t be any fixed positive integer. Let

Bt(x) = {n ≤ x : ν ′(n) = t}.

Then ∑
n∈Bt(x)

1

φ(b)
≤ c5 log x√

log log x
.

Assume for the moment that Lemma 3.3 is proved. Then Lemma 3.3

together with (13) show that

(14) N (s) ≤ c6xt(log x)2 log log log x√
log log x(log s)2

∑
a>x1/3/s3

P (a)<s3

1

φ(a)
.

The Lemma on page 3 in [6], shows that∑
a>x1/3/s3

P (a)<s3

1

φ(a)
≤ c7 exp

(
− log(x1/3/s3)

6 log s

)
.

Recalling that su = x3−u
, this gives

N (su) ≤
c8xt log log log x√

log log x
32u exp

(
−1

6
(3u−1 − 3)

)
,

and now summing over u, using the fact that the series∑
u≥0

32u exp

(
−1

6
(3u−1 − 3)

)
converges, as well as estimate (10), we get the desired estimate (9).

Proof of Lemma 3.3. The function ν ′ is strongly additive. Furthermore,

E(x) =
∑
pα≤x

ν ′(pα)

pα

=
∑

2<p≤x

ν ′(p)

p
+ O

(∑
p≥2

log p

p2

)

=
∑
a≥1

a
∑

1≤p≤x
p≡1+2a (mod 2a+1)

1

p
+ O(1)

� log log x

(∑
a≥1

a

2a

)
� log log x,(15)

where in the above estimates we used again estimate (6) for all d = 2a ≤ x.
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By Halász’s Theorem (see Theorem 21.5 on page 303 in [3]), it follows

that

#Bt(x) � x√
E(x)

� x√
log log x

.

In particular, by partial summation, we get∑
n∈Bt(x)

1

n
≤

∑
n≤y

1

n
+

∫ x

y

d(#Bt(s))

s

≤ log y +
#Bt(s)

s

∣∣∣s=x

s=y
+

∫ x

y

#Bt(s)

s2
ds

� log x

log log x
+ O(1) +

∫ x

y

ds

s
√

log log s

� log x

log log x
+ O(1) +

1√
log log x

∫ x

y

ds

s

� log x√
log log x

,(16)

uniformly in t. We now use the known fact that

1

φ(n)
� σ(n)

n2
=

1

n

∑
d|n

1

d
,

to get that ∑
n∈Bt(x)

1

φ(n)
�

∑
n∈Bt(x)

1

n

∑
d|n

1

d
,

which, by making the substitution n = md, changing the order of summa-

tion, and using the fact that ν ′ is strongly additive, becomes∑
n∈Bt(x)

1

n
≤
∑

1≤d≤x

1

d2

∑
m∈Bt−ν′(d)

1

m
.

From estimate (16), we immediately get∑
n∈B(x)

1

φ(n)
�

∑
1≤d≤x

log(x/d)

d2
√

log log(x/d)

≤ log x√
log log x

∑
d≥1

1

d2
� log x√

log log x
,

which completes the proof of Lemma 3.3 and of Theorem 2.1. �

Proof of Corollary 2.2. Let ε > 0 be given and put

t(x) := b(1/(4 log 2)− ε) log log log xc.
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Given distinct subsets I and J of {0, 1, . . . , t(x)}, let AI,J (x) be the set of

n ≤ x such that ∑
i∈I

φ(n + i) =
∑
j∈J

φ(n + j).

Clearly, we may assume that I and J are disjoint and then the above

relation is a recurrence of type (1) with t = t(x) and ai ∈ {0,±1}. Since

t(x) < y for large x, it follows, by Theorem 2.1, that

#AI,J (x) � x(log log log x)4

√
log log x

.

Since the number of pairs I, J of distinct subsets of {0, . . . , t(x)} does not

exceed 22t(x)+2, we get that

#

 ⋃
I,J⊂{0,...,t(x)}

I6=J

AI,J (x)

 � x(log log log x)422t(x)

√
log log x

=
x(log log log x)4

(log log x)2 log 2ε
= o(x).

The conclusion of the corollary follows from the above estimate by observing

that if n ≤ x is not in the union of AI,J (x) over all pairs of distinct subsets

I, J of {0, . . . , t(x)}, then all sums
∑

i∈I φ(n + i) for I ∈ {0, 1 . . . , t(n)}
are distinct. �

Proof of Theorem 2.3. We put B(x) = {n ≤ x : P (n) ≤ y}. By estimate

(3), it follows easily that #B(x) = o (x/(log x)2). We put P1(x) for the set

of n ≤ x− t such that n+ i 6∈ B(x) for any i = 0, . . . , t. Clearly, the number

of positive integers n ≤ x, such that either n > x− t or n is not in P1(x) is

(17) x−#P1(x) ≤ t + (t + 1)#B(x) � tx

(log x)2
.

We now let α ∈ (0, 1) be a constant to be determined later, let i 6= j with

ai 6= 0 be in {0, . . . , t}, and put

P2,i,j(x) = {n ∈ P1(x) : n + i is prime and ν(φ(n + j)) < α log log x},

and

P3,i(x) = {n ∈ P1(x) : n + i is prime and

ν(φ(n + j)) > α log log x for all j 6= i}.

It is clear that the union of P2,i,j(x) for all i 6= j with ai 6= 0 together with

the union of P3,i(x) for all i with ai 6= 0 make up Pa(x) ∩ P1(x).
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We now estimate P2,i,j(x). If n ∈ P2,i,j(x), then P = n+i = (n+j)+(i−j)

is a prime and n + j = Qm, where Q ≥ P (m) > y > |i − j| and ω(m) ≤
ν(φ(n + j)) + 1 ≤ K = bα log log xc+ 1. This leads to the equation

P − (i− j) = Qm,

where P and Q are primes, and Q ≤ x/m. Fixing m and noting that i− j

is coprime to p (because P = n + i = P (n + i) > y > t > |i− j|), it follows,

by Brun’s sieve, that the number of solutions (P, Q) of the above equation

once i, j and m are fixed is

≤ c1x

φ(m)(log(x/m))2
· |i− j|
φ(|i− j|)

.

Since |i − j| ≤ t, we have that |i − j|/φ(|i − j|) � log log t. Furthermore,

since x/m > Q > y, we get that log(x/m) > log y = log x/ log log x. Thus,

the number of solutions does not exceed

c2(log log x)2 log log t

φ(m)(log x)2
.

Summing up over all possible values of m ≤ x with ω(m) ≤ K, we get

(18) #P2,i,j(x) ≤ c2(log log x)2(log log t)

(log x)2

K∑
k=0

∑
m≤x

ω(φ(m))=k

1

φ(m)
.

It is easy to see from the multinomial formula that

∑
m≤x

ω(m)=k

1

φ(m)
≤ 1

k!

(∑
pα≤x

1

φ(pα)

)k

≤ 1

k!

(∑
p≤x

1

p− 1
+
∑
α≥2

∑
p≥2

1

pα−1(p− 1)

)

=
1

k!
(log log x + O(1))k.

Using the fact that k! > (k/e)k, we get

∑
m≤x

ω(m)=k

1

φ(m)
≤
(

e log log x + O(1)

k

)k

.
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The function k 7→ ((e log log x + O(1))/k)k is increasing for k ≤ K ≤
α log log x + 2 for large x, because α < 1. Hence,∑

m≤x
ω(m)=k

1

φ(m)
≤

(
e log log x + O(1)

k

)k

≤
(

e log log x + O(1)

α log log x + 2

)α log log x+2

� (log x)β,

where β = α log(e/α). Inserting the above estimate into estimate (18), we

get

(19) P2,i,j(x) ≤ c3(log log x)3 log log t

(log x)2−β
,

and summing up over all possible values for i and j, we get

(20)
∑

0≤i≤t
ai 6=0

∑
0≤j≤t

j 6=i

#P2,i,j(x) � c3t
2(log log x)3(log log t)

(log x)2−β
.

We now estimate P3,i(x). Let n ∈ P3,i(x). Reducing equation (1) modulo

2K , we get ai(p−1) ≡ 0 (mod 2K), where p = n+ i. Since ai 6= 0, it follows

that if we write αi = ν(ai), then p − 1 ≡ 0 (mod 2K−αi). The number of

such primes p ≤ x is

≤ x

φ(2K−αi) log(x/2K−αi)
� x2αi

2K log x
≤ xH(a)

(log x)γ
,

where γ = 1 + α log 2. Summing up over all possible i, we get

(21)
∑

0≤i≤t
ai 6=0

#P3,i(x) � tH(a)

(log x)γ
.

Choosing α such that β = γ, we get from (17), (20) and (21), that

#Pa(x) ≤ D(t, a)
x(log log x)3

(log x)β
.

The equation β = γ leads to 2−α log(e/α) = 1 + α log 2, whose solution in

the interval (0, 1) is α = 0.373365 . . . , leading to β = γ > 1.2588 · · · > 5/4,

which completes the proof of the theorem. �
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